

Evaluation of Bio-oxidation to Mitigate Long-Term Dissolution and Mass Discharge of Contaminants from Coal Tar and Creosote

Environmental, Inc.

David M. Mauro (META Environmental, Fairport, NY) | Randy Sillan, PE, PhD, (AECOM, Castle Rock, CO)

OVERVIEW

Enhancing NAPL composition change is a viable riskbased remediation strategy at coal tar and creosote sites to mitigate dissolution and mass flux to groundwater.

The following information will be discussed:

- NAPL depletion modeling requires NAPL effective solubility model
- Raoult's Law NAPL solubility model
- EPRI-developed laboratory-based NAPL equilibration method
- Applications to water-gas tar (MGP site) and creosote (wood-treating site)

NAPL DEPLETION MODEL

- Excel-based numerical model
- Groundwater discharge, Q_w (homogeneous)
- Biooxidation rates of compounds, k (constant)
- $\Delta m_{i,b} = V_w \bullet C_i \bullet (1 e^{-k \bullet \Delta t})$ C_i = effective aqueous solubility C_{eq}^i
- Models NAPL composition change with time
- Solubility Model determines effective solubility
- Assumes instantaneous equilibrium dissolution

Naphthalene Depletion from Creosote

* Aerobic biooxidation rate from biosparge pilot study

ANALYTICAL METHODS

The NAPL samples were analyzed by GC/FID (EPA 8015M) for fingerprinting, alkanes, and total petroleum hydrocarbons and by GC/MS/SIM (EPA 8270M) for PAHs, alkyl PAH homologues and other selected compounds.

- 1. 2.0 g of each NAPL sample was equilibrated with water in 40 ml VOA vials in duplicate.
- Samples were equilibrated for 5 days on an end-over-end rotator at ambient temperature.
- At the end of 5 days, about 30 ml of the aqueous portion (water weights were recorded) were transferred to new 40 mL VOA vials, taking great care to not collect any of the NAPL.
- Water samples were prepared by solvent extraction (EPA 3511) using DCM. The extracts were spiked with internal standard and analyzed by GC/MS/SIM-SCAN (EPA 8270M) for MAHs and PAHs.

EPA Method 3511 for Water Analysis

- Developed by META for EPRI, initially for use at MGP sites
- Small volumes of water are extracted for volatile and semivolatile compounds in one run
- 76 target compounds included benzene, toluene, xylenes, and alkylated benzenes, PAHs, alkylated PAHs, and several heterocyclic compounds
- Detection Limit was 0.6 µg/L
- Pentachlorophenol was analyzed for with EPA 3511 in creosote samples

SOLUBILITY MODEL

From Raoult's Law, the effective aqueous solubility of compound *i* from the NAPL is (Brown et al. 2005):

$$C_{eq}^{i} = \frac{C_{s}^{i}}{FR_{i}} \frac{\overline{MW}_{ct}}{MW_{i}} C_{ct}^{i} = G_{i} \overline{MW}_{ct}$$

 C_S^i = pure phase aqueous solubility of compound *i* FR_i = solid-liquid fugacity ratio of compound i C_{ct}^{i} = mass fraction of compound *i in NAPL*

 MW_i = molecular weight of compound i

 \overline{MW}_{ct} = average molecular weight of the NAPL

- Fugacity ratios and pure phase aqueous solubilities from Brown et al. (2005)
- Average molecular weight of NAPL is the slope of line fit to C_{eq}^i versus G_i for compounds (G_i >0.0001)
- Slope is from a linear regression of the log-transformed data

1.E+00-Fluorene ₽ 1.E-01 1.E-02 5.E-05 5.E-04 5.E-02 5.E-03 5.E-01 G_i (mg/L/(g/mole))

SAMPLING METHODS

- A two-phase NAPL/water equilibration test was conducted using the method described in EPRI (2004) and Brown et al. (2005)
- Following equilibration, NAPL is separated into LNAPL, DNAPL, and various smears and blebs according to the relative aliphatic and aromatic content
- To prevent NAPL from being collected with the equilibrated water, a double needle sampling approach is used

- 1. Insert pipet with parafilm plug into the sample.
- 2. Carefully insert syringe needle through the parafilm plug.
- 3. Withdraw 25 to 30 mL of water sample and transfer to a clean vial for analysis.

SUMMARY

- A Raoult's Law solubility model provided good fits to the laboratory analytical data from NAPL-water equilibration batch tests
- EPA Methods 3511/8270M provide the full range of volatile and semivolatile coal tar compounds to less than a part per billion using only 25 mL to 30 mL of sample
- The average molecular weights determined by this method were consistent with other reported MWs for MGP tar and creosote
- The solubility models were used to model NAPL depletion and weathering for dissolved-phase remediation strategies (aerobic biooxidation and natural attenuation)

References

EPRI. 2004. Laboratory Assessment of Leaching Potential Coal Tar at MGP Sites. 1009425. Brown, E. et al. 2005. "Raoult's Law-Based

Method for Determination of Coal Tar Average Molecular Weight," Env. Toxicology and Chemistry, 24:1886-1892.

www.metaenv.com www.aecom.com